( 0 از 0 امتیاز )
اشتراک گذاری
موجود

یادگیری عمیق با MATLAB

نویسنده / مولف: phil kim / علی توتونچیان

[3d-flip-book mode=”fullscreen” id=”2068″][/3d-flip-book]

تعداد

مدت زمان باقی مانده

قیمت
85,000 تومان
تخفیف
20 %
قیمت برای شما
68,000 تومان

اطلاعات بیشتر

وزن 0.282 کیلوگرم
مولف

phil kim

مترجم

علی توتونچیان

ویراستار ادبی

فاطمه علی‌اکبری

سال و نوبت چاپ

اول 1397

تعداد صفحات

167

قطع کتاب

وزیری

نوع جلد

شومیز

دسته‌بندی موضوعی

برق، علوم و مهندسی کامپیوتر

برنامه / فایل تمرینی

دارد

شابک

9786003072053

فایل همراه

https://dl.kianpub.com/BookFiles/KianPub.com_Deep_Learning.rar

دوم تا چهارم بر آنها تمرکز می‌کنیم. از آنجایی که یادگیری عمیق نوعی از یادگیری ماشین است که از شبکه عصبی استفاده می‌کند، شبکه عصبی و یادگیری عمیق قابل تفکیک نیستند. فصل دوم با مبانی شبکه‌های عصبی، شامل مبانی عملکرد، معماری و قوانین یادگیری آغاز می‌شود. همچنین دلیل سیر تکاملی از شبکه عصبی تک‌لایه به شبکه عصبی چندلایه را نیز ارایه می‌کند. فصل سوم الگوریتم پس‌انتشار را معرفی می‌کند که قانون یادگیری مهمی در شبکه‌های عصبی است و همچنین در یادگیری عمیق نیز به کار می‌رود. این فصل توضیح می‌دهد که ارتباط میان توابع هزینه و قوانین یادگیری چیست و چه توابع هزینه‌ای به طور گسترده در یادگیری عمیق به کار می‌روند.
فصل چهارم چگونگی استفاده از شبکه‌های عصبی در مسایل رده‌بندی را نشان می‌دهد. به دلیل اینکه رده‌بندی یکی از مهم‌ترین کاربردهای یادگیری ماشین است، فصل مجزایی را به آن اختصاص داده‌ایم. برای مثال تشخیص تصاویر که یکی از اصلی‌ترین کاربردهای یادگیری عمیق است، یک مساله رده‌بندی محسوب می‌شود.
موضوع سوم کتاب، یادگیری عمیق است که موضوع اصلی کتاب نیز است. یادگیری عمیق در فصل‌های پنجم و ششم توضیح داده شده است. فصل پنجم عواملی را که موجب کارایی بسیار بالای یادگیری عمیق شده‌اند، معرفی می‌کند. برای درک بهتر، این فصل با تاریخچه موانع و راه‌حل‌هایی که یادگیری عمیق را به وضعیت کنونی رسانده‌اند، آغاز می‌شود. فصل ششم شبکه‌های عصبی کانولوشنال را ارایه می‌کند که یکی از مهم‌ترین روش‌های یادگیری عمیق است. شبکه عصبی کانولوشنال در تشخیص تصاویر کاربرد بسیار زیادی دارد. این فصل با معرفی مفاهیم اساسی و معماری شبکه عصبی کانولوشنال و مقایسه آن با الگوریتم‌های قدیمی‌تر تشخیص تصاویر آغاز می‌شود و با توضیح نقش‌ها و عملکرد لایه کانولوشن و لایه ادغام که اجزای اساسی تشکیل‌دهنده شبکه عصبی کانولوشنال هستند، ادامه می‌یابد. این فصل با مثالی از تشخیص تصویر ارقام به کمک شبکه عصبی کانولوشنال و بررسی تغییرات تصویر در طول عبور از لایه‌ها پایان می‌یابد.
تمام کدهای منبع مورد استفاده در این کتاب در وب‌سایت انتشارات دانشگاهی کیان و در صفحه‌ی شخصی این کتاب به صورت رایگان قابل دانلود است. مثال‌های کتاب در خود MATLAB اجرا شده است و نیازی به استفاده از جعبه‌ابزار ندارد.

یادگیری عمیق با MATLAB

هیچ دیدگاهی برای این محصول نوشته نشده است.

اولین کسی باشید که دیدگاهی می نویسد “یادگیری عمیق با MATLAB”

نشانی ایمیل شما منتشر نخواهد شد.